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Abstract

Localy, the stress-energy of quantized matter can become arbitrarily neg-
ative in a wide class of quantum states, thereby violating the classical
positive-energy conditions of General Relativity without bound. Since
without such constraints the theory would have no predictive power, un-
covering what nonlocal constraints, if any, quantum field theory imposes
on the renormalized stress-energy tensor is of central importance for semi-
classical gravity. One such nonlocal constraint, the averaged null en-
ergy condition (AN EC---the condition that the null-null component of the
stress-energy tensor integrated along a complete null geodesic isS nonneg-
ative in every quantum state) bass been recently shown to hold for linear
quantum fields in a large elms of spacetimes. Nevertheless, it is easy
to show by using a simple scaling argument that ANECasstated cannot
hold generically in curved four-dimensional spacetime, and this scaling ar-
gument has been widely interpreted as a death-blow for averaged energy




conditions in quantum field theory. In this notc | propose a simple gener-
alization of ANEC, in which the right-hand-side of the ANLC inequality
is replaced by a finite (but in general negative) state-independent lower
bound. As long as attention is focused on asymptotically well-behaved
space times, this generalized version of ANEC is safe from the threat of
the scaling argument, and thus stands a chance of being generally valid in
four-dimensional curved spacectime.] argue that when generalized ANEC
holds, it has implications for the non-negativity of totalenergyand for
singularity theorems similar to the implications of AN EC. w particular, |
show that if generdized ANEC is satisfied in static traversable wormhole
spacetimes (which is likely but remains to be shown), then macroscopic
wormholes (but not necessarily microscopic, Planck-size wormholes) arc
ruled out by quantum field theory.




The most striking aspect of the violation of positive-cricr,gy conditions
by quantum stress-energy tensors is the unbounded extent of the violation. For
example, even for a Klein-Gordon scalar field in flat, Minkowski space, the
regularized (norinal-ordered) expectation vaue (w|:7po(z):|w) a any point z is
unbounded from below as a functional of the quantum statew,Furthermore,
the volume integral of (w|Too(z):|w) over any fixed, spacelike 3-box of finite size
is also unbounded from below as a functional of w (and a similar result holds for
the spacctilnc-volume integral over a compact 4- box; see Sect. 1 and Ref. []] of
[1] for more details). Given this tendency of the regularized expectation value
(w]Tas(2)w) to become unboundedly negative, any condition that sets a lower
bound on nonlocal averages of {w|7as(2)|w) would be a significant constraint on
the quantum stress-energy tensor.

in this note | propose the following constraint as a generalization of the
averaged null energy condition (A NEC;sce [2] and [1] for a discussionof ANEC
and its brief history): Let {w|7g3]w)denote the (renormalized ) stress-energy
tensor of a quantum field on a curved spacetitne (M, @), arid let y ¢ M be
acomplete null geodesic, For k¢ a given (parallcl-propagat ed)tangent vector
along -y, let mc introduce the following quantity 3(%):

3(k) = inff(w|Talw) kb d 1
30 = int (/T v )

I will say that (7as) satisfies generalized ANEC along v if B(k) > —oo. Here
the infimum is taken over all Hadamard states w of the quantum field, and the
mtegralalong v is with respect to the affine parameter v which corresponds to
the tangent vector k¢ (i.e, dy®/dv = k®). Properly interpreted, the quantity
# is al-form, whose contraction with the tangent vector k® is given by the
right hand side of Eq. (1). More precisely, 2 is an element of the quotient space
1,"M/Np, where p is a point on v, N, C 7,"M is the subspace of all |-forms
a€1,"M which annihilate the tangent vector v, [a(y.)= O], and 3 is paralel
transported along 7 so that it does not matter at which p € 7 the quantity
B(v. ) is evaluated.

The usual ANEC along 7 is recovered by setting #(v.) > 0. If the
integrand on the right hand side of Eq. (1) is non-integrable for some Hadamard
states w, a more precise version of generalized AN EC needs to be employed just
like the more precise version of ANEC discussed in Sect. 2 of [2]. Namely, let
c(z)be a compact-supported real-valued function on IR whose Fourier transform
é(s) is such that for some § > 0 the function (1 4 s?)!+4|¢(s)| is bounded [which
implies that ¢(z)isC!]. Generalized ANEC holds along a complete null geodesic
7 if for every such weighting function ¢(z) the I-form 8. aong 7 defined by

Be(k) = inf liminf [ (w|Tu|w)k?k? [e(v/A))* dv )

A= 00 .

satisfies B:(k)> —co. Generalized ANECreduces (or, more accurately, is
strengthened) to ANEC when one imposes the stronger condition: B.(v.) > O



for all weighting functions c¢(z) as above. Note that generalized ANEC can be
formulated equivalently in the (perhaps more sensible) forin of an inequality:
namely, for al ¢(2) chosen as above,

~— 0D

liminf/(w|’1‘ab|w)k“kb le(v/ M) dv > B.(k) Vw , (3)
L

where the expression S.(k) on the right hand side is astate-independent lower
hound for the (weighted) ANEC integral on the left hand side. In general (when
generalized ANEC holds), this lower bound (i.e,, the precise expression of the
[-form 3.) will depend only on the geometry of the spacetime (M, g) [as well,
of course, as on thenull geodesic v and the weighting function c(z)]. If the
infimum over w in Eq. ('2) is achieved [for al c(z)] by somelladamard state wo,
so that

Be(k) = liminf/(w0|7},b|w0)kakt' [e(v/N)) dv

A—o0

thenEq. (3) can be written in the form of a diflerence inequality (sec [3] and [I]
on difference inequalities):

liminf ]—,( (W]Taslw) {wolTuslwo) ) k2k® [c(v/N)]? dv = 0 Vw 4

A= 0

Conversely, if (w|Tap(2)|w) satisfies a difference inequality
li;ninf/((wl']'a“w) - I)Gb)k“kb [e(v/X)Pdv > 0 Vw
ey 4

such that the expression Dgpk®k®is integrable along ¥, then generalized ANEC
(Eq. (3)] holds with 8e(k)2 [c(O)]’ [, Dark®k® dv.

Before 1 discuss the physical significance of generalized AN EC,lct me
explain why this modificd version of ANEC has a better chance of holding gen-
eraly in curved four-dimensiona spacetime thau the origina version. Recall
the scaling argument given in the note added in proof to [2] and discussed in
more detail recently in [4]: Restrict attention, for simplicity, to a nassless Klein-
Gordon scalar quantum field ¢. Given an arbitrary four- dimensional spacetime
(M, g) in which ¢ satisfies ANEC along a null geodesic +, the scaling argument
asks us to consider the new spacetime (M, k2g), where x > 0 is a constant
scale factor (in particular, in this new spacetime the curve -y ¢ M is still a null
geodesic with the same affine parameter v). ‘To every Hadamard state w of ¢
with two-point function g, (2,2")on the original spacetime, there! corresponds a
Hadamard state w on the scaled spacetime with two-point function &~ 2pw(z,2").
[The massless Klein-Gordon equation is invariant under scale transformations
(whereas the massive Klein-Gordon eguation is scale-invariant Upto a rescal-
ing of the mass); therefore the function p,(x,2') remains a hi-solution of the
massless Klein-Gordon equation under the scaling g — «?g.The overall scale
factor x‘*is introduced to keep i, in Hadamard form in the new spacetime.]
Normally, then, one would expect the regularized expectation value (wlTab|w) to
simply scale as K*(because its definition involves differentiating the two-point
function twice with respect to localy inertial coordinates). However, according
to the general renormalization prescription for p.., before the difterentiations and




the limit 2z — 2’ are carried out to evaluate (w|7us(x)|w). a locally constructed
Hadamard distribution fto{2, ') necds to be subtracted from fw(2, z’) to ob-
tain the regularized two- point function. 1t turns out thatthis loca Hadamard
distribution fto does not scale in the samesinple way as ju, under the scal-
ing g — x%g of the metric, and this anomalous scaling behavior of to{z, ")
ends Up contributing two additional terins (apart from the simply scaed term
k™ w|T s |w)) to the value of (w|Taelw) in the scaled spacetime ([5]). These ad-
ditionalterms are of the form a s ‘Inx DHap -1 b~ Ink My, Where a, b
aredimensionless (in Planck units) constants which have known universal values
for each fixed quantum ficld, and (DH gy and (PH 45 denote the conserved local
curvature terms

!

Mgy = 2R 4 2RRa — gae(? OR+ 3R?) (5)

and
Dff 4y = Riap — ORap + 2R Rep ~ bgan( O R+ RR) (6)

respectively. The precise numerical values of the constants a and b depend
only on the spin and internal structure of the specific quantumn field considered.
[Note thatalthough this scaling behavior of (w |7ablw) is closely related to the
famous ambiguity in the renormalization prescription, the constantsaandb
are determined independently of thisambiguity. FOr most fields of interest
their values can be found in the literature (see [3], p. 1450 for a table of these
constants for various quantum fields, notice, however, thata and b in that table
arc given with respect to different conserved curvature terms which arc linear
combinations of (VHap and PHap). 1will not need to specify the exact values
of a and b in this note: it will suffice to know only the fact that in general
these are constants with absolute magnitudes of order 10”(inPlanck units).]
It is now clear that if the curvature of the original spacetime is sufficiently
general So that the integrals [, (Hak®k® dvand [ PHak*k" dv are non-
vanishing, then by choosing the scale factor « appropriately (note that the
logarithm ]n k has indefinite sign) it should be possible tofind a spacetirnc
(M, x%g) in which ANLEC is violated along . Notice, however, the crucia
feature of the ANEC-violating term (proportional to £~ " In &) disclosed by this
scaling argument: it is independent of the quantum state w.Therefore, if as
a functional of the quantum state the ANEC integral along v is bounded from
below in the original spacetirne (as would be the case if A NECholds there), with
the greatest lower bound given by a l-form g asin Eq. ( 1), thenthe only effect
of the scaling g -~ «2g will be to shift this lower bound 8 down (or up) by an
amount proportional to k'‘Inx and the integrals of (DHapk®k® and DHapk2k?
along v. When the spacetime (M, g) is asymptotically wc]l-behaved (so that
its Ricci curvature falls off appropriately at null infinity), these integrals are
finite. Consequently, if generalized A NEC holds along v inthe asymptotically
flat (more precisely, asymptotically empty) spacetime (M, g), then it holds In
the scaled spacetime (M, «x2g) for any £ >0.

in the remainder of this note | will argue that generalized ANEC, al-
though a much weaker constraint than the usual ANEC, has physical signifi-
cance quite similar to that of ANEC in semiclassical gravity. Iwill make this




argument by discussing in turn the implications oOf generahized ANEC for pos-
itivity of total encrgy, for singularity theorems, and for theexistence of static
traversable wormhole solutions to the semiclassical Einstein equations.

Posttwvity of total energy.- Recall the argument in Ref. [1] leading to the
Theorem in Sect. 1 there. Instead of a 7ab satisfying ANEC in the simple form
Eq. (3) of [1], consider a quantum stress-energy tensor (w l'f'ab|w> which satisfies
generalized ANEC in the form

/(w|’1'ab|w)k“kb dv 2 By(k) Yw (7)
7

along all complete null geodesics v in (M, ¢) [assume, in other words, that
{wl|Tqslw) is integrable along each complete v and satisfies kq. (3) above]. Con-
sider a Cauchy surface ¥ and a subregion S C Y asin [I], andmodify the
assumption (Al) in Sect. 1 of [I] to:

(A 1) For each fixed Hadamard state w, let the subregion S C X be chosen large
enough such that generalized ANEC([Eq. (7)] holds for {w|7,s|w) along al null
generators of the future horizon H* (S).

Assume also that the assumption (A2) holds as described in [I]. ‘1'hen, using ex-
actly the same arguments as in the proof of the Theoremin Sect. 1 of [1] [between
Egs.(6) and (10) there], it follows that either the total energy cont aiued in S,
f5<w|7'ablw>n“nb d3¢, IS nonnegative, or, if this total energy is negative, then
it is bounded from below by a lower bound which depends on w only weakly
through the choice of S. More precisaly, it follows that

/(w|7‘ab]w>n“nb d*c >
s

min [0, sup }—l/ d°Q B, (-Va)
a IVall s yeHH(S) |

where the supremum on the right hand side is over al time functions o which
satisfy (for some constants &, g > O) the conditions of assumption(A2), and
the integral inside the Sup, is over al null generators of tile horizon H+ (S),
evaluated with respect to the unique “solid angle’’ -measure d*§2 on the set of
generators such that d?§2dv=d3c [where Vv is the afline paraineter along the
generators, and d3¢ is the canonical volume element of H* (s)]. Consequently,
just as ANEC places a positivity constraint on the integrated cnergy density
under appropriate assumptions, SO aso generalized ANEC places, under similar
assumptions, an essentially state-independent (in general negative) lower bound
on the same quantity. (Note that in general the quantum state w determines
exactly how “large” the region S C ¥ needs to be chosen, and this is the only
reason the lower bound might depend onw.)

Yw , (8)

Sitngularity theorems—-- To illustrate the relevance of generalized ANEC
for singularity theorems and other global resulis of classical General Relativ-
ity, recall the Proposition proved in Sect. 2 of [2], which uscs the constraint
on the Ricci tensor imposed by ANEC and the Einstein equations to demon-
strate a focusing lemma for null geodesics, a result of the kind which constitute



the key ingredientin the proof of global results such as singularity theorems.
A straightforward reworking of the argument in the proof described in Ref.2
[given betweenligs. (4) and (9) there] directly demonstrates the following vari-
ation of that Proposition:

Proposition: Let p be a point on a complete null geodesic y(v). Assume that
satisfies the following property: For thespecific chioice of the weighting function
c(x) [see the formulation Kq. (3) of generalized A NEC above] givenby

e(z) = ei(x) @ —-z3H* |z < 1,
aa(x) =0, fz[ > 1, )

the weighted average of the Ricci tensor Rasalon g+ obeys the inequality

A— 00

liminf Rapk®k® [er(v/ M) dv 2= Bi(k), (lo)
0

where 8, (k) > —co (and where v = O at p). [If gencralized ANEC (together
with semiclassical Einstein’s equations) holds, then with 1=4x3,, this con-
dition must hold in every Hadamard state of the quantumn field for at least one
direction aong 4 from p.] Consider a null geodesic congruence containing y
whose expansionf(v) along v sdatisfies, initially at the point p, tile inequality

u(o) < Ai(k) (1)

(note that under a reseadling of the afline parameter the expansion O scales in
the same way as the tangent vector k, so this inequality is independent of the
choice of afline parameter). ‘1'hen, either 6 vanishes identically along~y, or there
exists a finite vo > 0 af which limy_., 0(v) = —o0.

Therefore, independently of which quantum state the field is in, generalized
ANEC guarantees the refocusing of a null geodesic congruence if the initial con-
vergence is sufliciently nonpositive, or, in other words (assuming 81< 0), if the
initial convergence is more negative than the amount of ANEC violation allowed
by generalized ANEC. As was also the case with ANEC (sec the last paragraph
on p. 405 of Ref. [2]), a proof can also probably be given that if generalized
ANEC holds aong a complete null geodesic v, and if v satisfies the null generic
condition such that the maximum magnitude of the quantity *°k°k(cRajasek )
(which enters the formulation of the generic condition) is sufficiently large com-
pared to the magnitude of ANEC violation allowed by generalized ANEC [cf.
Eq.(]1)], then ¥y must contain a pair of conjugate points.

Traversable wormholes. - A widely applicable generalized ANEC theo-
rem would place a significant a priori constraint on possible solutions to the
semiclassical Einstein eguations. Namely, assume that such a theorem- to the
effect that generalized ANEC holds along (cert sin) complete null geodesics -y
in every asymptotically empty spacetiine, with a geometric, state-independent
lower bound /3Y---werc available. Then, given auy spacetime(M,g), one could
compute for each specified v ¢ M the quantity 3, in the geometry of (M, g), and
compare the result with the ANEC integral of the Einstein tensor g-Gas along

8m
the same null geodesic. If the comparison fails to satisfy the generalized ANEC




inequality [¥q. (3)] for at least some 7, then there cannot, exist any Hadamard
quantumstate which would make (M, g) a self-consistcut sciniclassical solution
of the Einstein equations; in other words, the spacetime (M, g) would be ruled
out by quantum field theory (at least with the specific quantuin fields for which
a detailed analysis of the ANEC integrals can be carried out). A nice illus-
tration of these ideas is provided by static (spherically synunetric) traversable
wormbhole spacetimes. Such a wormhole has topology S*x R?, and a metric of
the general form

g= _ez«v(l)dtz +dI* + 1-(1)2(d0"’ + Sin20d¢2) , (12)

where the radia coordinate 1 ranges from --oc (on one asymptotic region) to
+5C (on the other ). For thereto benoevent horizons (hence for the wormhole
tobe traversable), ® needs to be finite everywhere. For asymiptotic flatness, it
is necessary thatas! - d co (more precisely, for |I| >> rg)

r(l) >~ | = M In (l—%) , and (1) =~ F% , (13)
where 7o is the radius of the wormhole’s “throat,” (where 1 varnishes), and M
is the wormhole’s mass. Throughout my discussion here 1 will assume that
ro~2M (which should be the case if as seen from infinity the wormhole is
indistinguishable from an astrophysical object); as a result, the class of worm -
holes 1 will consider is parametrized (essentially) by one variable: the wormhole
mass M . ¥or more details on wormholes see the discussion in [6]; for a more
ul~-to-date account (including a discussion of th¢ more recentwork on ANEC)
sce [7)

The spacetime given by Eqs.(12-13)[with everywhere regular ®()]vio-
lates ANKC dong all its radial null geodesics: a straightforward computation
of the Einsteintensor followed by an integration by parts reveas that

1 R 1 [ e\
= ; al - - dl
V = SW,[yGabk k°dv i V/»ooe (r) (14)

aong any radial null geodesic v (note that the afline parameter valongy can be
chosen to be any positive constant times f e dl; 1 will choose this constant to
be unity throughout so that dv= e*dl and k = e=2%9/6t + ¢~ % 8/0l). Here
and in what follows a prime (') denotes differentiation with respect to the radial
coordinate 1. Substituting ¥q.(13) in the last integral of ¥q.(1 4) (and carrying
out the integration only over |{|>2M) gives

67 1
384w M

Can this ANEC violation V necessary to maint ain a traversable wormhole be
supported by a quantum stress-energy tensor? Consider a massless Klein-
Gordon field on the wormhole spacetime (the answer is not likely to depend
significantly on the spin or internal structure of the field). Assume that gener-
alized ANEC holds along the radial null geodesics of the wormhole. Whether or
not this assumption is true remains to be shown; however, the scaling argument

V ~ (15)




sketched above combined with the known ANEC theorems ([2])1u two and four
dimensions suggest that it is likely to be true (note that the wormhole’s radial
null geodesics are complete and achronal). Procecding with the assumption that
gencralized ANEC holds, how can wc guess the form that the (finite) ANEC
lower bound 8(k) is likely to take along the radial null geodesics of the wormhole
spat-ctilnc? One way to approach this question is to look closely at the scaling
behavior of the wormhole metric Eq. (12). in general, a scaling g — x%g of
Xq. (12) leads to a ncw worimhole metric g = x2g for which the mnetric functions
& and rarc given by

o(l) = ®(I/k), and 7(I) = &kr(l/K), (16)

where a har over a symbol indicates that the corresponding quantity refers to the
scaled spacctime with metric g == x2g.FromEq. (14) it follows quite generally
that V =«~!V, and from Eq. (13) it follows that 7o-&7roand [consistent with
Eq.(15)]M = kM. From the scaling argument 1 described above for a general
spacctime, it follows that

e 1 Ink
A , (1) apt (2) .aLb
pk) = 3 glk)y + 3 [7 (a Hank®k" 4 b VH k% ) dv (17)

where (Hay and PHay arc the conserved curvature terms given by Egs. (5)
and (6), respectively. Computer algebra systems ([8]) make the computation of
these higher curvature terms easier: for the wormhole metric [I2q. (12)] 1 find

[ r2

(l)Habkakb dv — —87TD - (c"q’)“ & — 3 (7‘/8_ q,)/ T/(ILI

n e_d, (I)"” -- Zi(l)’(l)“ _ ~(r—’2)-2—(1>” + 7]’ (4)1)3
S " 1

t 3(’:4)i[1 (22 + 1’:1_ (_’"7’.,’2,)‘2,__(5,’;‘;(,‘/)2
:—ZVW + (flr-‘lg-’—-'(b - 2%(@'22 dl (18)
and
Ofpkk? dv = -2 [TD —2(e?) 0" - 7 (r’c'<1>)’£;(;,

J /
4 e ® ((I)”” +5Lq)/q’u +7'_(I)/u + 1@
r

r

+ Q(L:Z)i[l -t 2(7")?) -2%)—2 —-6-:;(7-')?
N 4(_’“’_23@ =@y (19)
r r

where the symbols TD denote total derivative texms of the form dF[®,r]/dl with
limj_, 400 # = O under the boundary conditions Egs. (1 3). A calculation similar
to the derivation of Eq. (15) from Eq. (14) gives, when applied to Igs. (18)- (19),

W pagt gy o 3 —12214200481n(2) 1
fy }]abk k% dv ~ TQ—g——"—~M3 46}\433 ' (20)




and

o178 (21)

2y, b/;“}g"dvz _1_' &1 17+ 4704 0In(2) 1 )
2520 M3 WE

Now let B{M)denote the value of the quantity £(k) for a wortnhole spacetime
[gs. (12) (13)] of mass M (recall ro~ 2M). Note that, for simplicily, 1 have
been ignoring’ in this discussion themore accurate version ligs. ('2)- (3) of gener-
alized ANEC; more precisely, 1 have assumed (and will continue to assume) that
for a general weighting function c(z) it holds that 3. (k)= [c(0)]23(k). Combin-
ing Bgs. (20)- (21) with Eqg. (17) and recaling thata ~b ~ 107, 1 deduce the
relation

In 10~ ¢

—KvS M3 ’ (22)

1
B(xM) = —B(M) 4

where € is a numerical constant with {c¢|~ 1. It is reasonable to guess (and this
is the only “guessing’involved in the present argument) that |[F#(1)|~ 1 i.e,
that the value of B(M) for a Planck-mass (M ~ 1) wormhole is (in absolute
magnitude) of order unity, that is, of Planck size (in Planck units). Then
lg. (22) gives

B(M) zﬁ% (e 4 107%cyIn M) | 23)

where ¢1 and c2 are constants with |c;|~]ca| ~ 1. Clearly, for reasonable M the
second term in parenthesis in Eq. (23) is negligible compared to the first; hence
|B(M)|~1/M3.In order to have the ANEC violation V [Eq. ( 15)] supportable
by the renormalized stress-energy tensor, it is necessary t hat B(M) < V, which
is only possible if |B(M)|>|V]|, which implies A7 °< C,where =~ 1. There-
fore, if gencralized A NEC holds, a quantum Klein- Gordon field can support the
A NEC violation necessary for a traversable wormihole only if the wormhole has
Planck mass or less; in other words, alltraversahle wormholes except possibly
those of Planck size are ruled out by quantum ficld theory.

It is important to keep in mind that this conclusion rests entirely on the
assumption that generalized ANEC holds along the radial null geodesics of the
wormbhole spacetime. If it can be shown that the ANEC integral along these
geodesics is unbounded from below as a functional of the quantum state, then
no amount of ANEC violation can be ruled out by quantum field theory; in
particular, there might exist states in whit.b tile violation Eq. (15) necessary
for a macroscopic traversable wormhole is supported by the expected quantum
stress-energy tensor. Even if generalized ANEC could be shown to hold by indi-
rect methods, a rigorous computation of the lower bound B(k) will be necessary
to demonstrate that it indeed has the behavior described in Egs. (22)- (23). [It
is plausible to conjecture that if generdized ANEC holds, then it can be put
in the form Eq. (4), with the “minimuin-ANEC: integral” statewo being given
by the standard, isometry-invariant vacuum for the wormhole metric.] Also,
my conclusion is based on the analysis of a simple one-parameter family of
wormbholes; the general criterion to decide which wormhole metrics Liq. (12) are
alowed in semiclassical gravity is bound to be much more complicated. For
example, one could clloosc the functionr(l)to be very slowly varying so as to
make the integral in Eq. (14) as small (in absolute value) as the microscopic




A N IiC violation allowed by quantumn field theory. It appears that a macro-
scopic wormnhole of this kind (with extremely small radial curvature) could be
alowed even when generalized ANEC holds; however, such a spacetime would
look more like a constant-radius S°'x R” universe than a wormhole joining two
asymptotically flat regions. Finally, although the main conclusion is almost
certainly independent of the spin and internal siructure of the specific Klein-
Gordon field, the argument above deds only with the question of maintaining a
wormhole using free (non-interacting) quantum ficlds. A plausible configuration
for wormhole maintenance based on the Casimir effect (where anelectromag-
netic field providing the negative Casimir energy interacts with the matter ficlds
in the conducting plates which trap it in the Casiinir vacuuin state) was outlined
in Ref. [6]. To rule out macroscopic configurations of that sort, one would need
a generalized ANYC theorem applicable to interacting fields. Nevertheless, it is
diflicult to sce how interactions could induce a violation of generalized A N INC
if such a theorem holds generally in non-interacting quantum field theory.

Similar conclusions about the constraint imposed by generalized ANEC
on solutions of semiclassical Einstein equations can be reached for spacetimes
more general than wormbholes. For example, in Ref. [9] it is shown that when
the classical null energy condition holds, a region with non-trivial topological
structure cannot be visible from infinity in an asymptotically flat spacetime.
Combining the proof of this result with arguments similar to above, it can
be shown that if generaized ANEC holds along complete null geodesics v in
an asymptotically flat spacetime, with a microscopic (i. e.,, proportional to h)
ANEC lower bound £y, then a nontrivial topological structure can be visible
from infinity only if its spacetime curvature is of the Planck size.
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